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o Hardware (middlebox) == Software (VNFs)
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=== Multi-core System Architecture
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e VNF consolidation causes throughput degradation ranges from 12% to 50% as more
VNFs are consolidated on the same server!1l2]

[1] Zeng C, Liu F, Chen S, Jiang W, Li M. Demystifying the performance interference of co-located virtual network functions, In Proc. of IEEE INFOCOM, 2018
[2] Manousis A, Sharma RA, Sekar V, Sherry J. Contention-Aware Performance Prediction For Virtualized Network Functions, In Proc. of ACM SIGCOMM, 2020
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=== Recent Studies on NUMA Impact

e Service Function Chain (SFC)
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Router Monitor Firewall Load balancer

e Recent studies!!!2] demonstrated randomly placing VNFs of
an SFC has a significant impact on the performance
degradation

o Due to inter-node resource contention

e But these works overlooked
o Intra-node contention
o Performance guarantee between running SFCs
o Impact of dynamic variation in SFC traffic

[1] Zheng Z, Bi J, Yu H, Wang H, Sun C, Hu H, Wu J. Octans: Optimal placement of service function chains in many-core systems, in Proc. of IEEE TPDS, 2021
[2] Sieber C, Durner R, Ehm M, Kellerer W, Sharma P. Towards optimal adaptation of nfv packet processing to modern cpu memory architectures, In Proc. of ACM CAN, 2017



0l .
==z Motivation (NUMA Impact- SFC)
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Variation in SFC throughput vs. input traffic rate for running
VNFs in different combinations of Node 0 and Node 1.
VNF1: Basic Monitor; VNF2: Router; VNF3:Simple Forward

e When SFC is placed in remote node (1 — 1 — 1), the performance degrades
by 22% due to remote memory access overhead

e Randomly selecting cores to place VNFs in an SFC (1-0-1) can resultin 52%
lower throughput compared to an optimal placement solution (0 — 0 — 0)

Recommends to place all VNFs of an SFC in the same node. Migrate
SFCs/VNFs between nodes based on traffic rates to increase their
throughput and thereby meeting the SLAs
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~—= VNF Migration between NUMA Nodes
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The effect of VNF migration between NUMA nodes on VNF performance in a server

Initially, VNF is running in Node 1

Migrate VNF to Node 0 at 13" sec and notice seamless migration with a

minimal performance impact in the immediate second

Docker feature cpuset used to migrate VNF between cores in a server



=== \What about Performance Guarantee?
2

e Recent works2hBl jdentified that contention at LLC is one of the

primary causes for performance degradation

e Addressed it by LLC resource partitioning using Intel’s Cache Allocation
Technology (CAT) mechanism!*

Is LLC isolation sufficient to ensure performance isolation?

[1] Veitch P, Curley E, Kantecki T. Performance evaluation of cache allocation technology for nfv noisy neighbor mitigation, In Proc. of IEEE NetSoft, 2017

[2] Tootoonchian A, Panda A, Lan C, Walls M, Argyraki K, Ratnasamy S, Shenker S. Resq: Enabling slos in network function virtualization, In Proc. of ACM NSDI, 2018

[3] LiB, WangY, Wang R, Tai C, Iyer R, Zhou Z, Herdrich A, Zhang T, Haj-Ali A, Stoica I, Asanovic K.RLDRM: closed loop dynamic cache allocation with deep
reinforcement learning for network function virtualization, In Proc. of IEEE Netsoft, 2020

[4] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gianos, Ronak Singhal, and Ravi Iyer. Cache qos: From concept to reality in the intel® xeon®
processor €5-2600 v3 product family, In Proc. of IEEE HPCA, 2016
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W Impact of LLC allocations on Memory

== Bandwidth (MB)
s 1

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Rate Controller (don't Rate Controller (restrict
Last Level Cache restrict memory access) 90% of memory access)
- o (3] < wn - S =z
( g‘ g g‘ g g ------- 23 |22 §' J v [ast Level Cache :
- o ™ <t w E‘N 5"‘ =
Memory Controlier FOED ENEMNE =2 22§
Core 0 Core 1 Core 1 Core 1 Core 1
request request | request request | request Memory Controller h
Core 0 Core 0 Core 0 Core 0 Core 1 Core 1
re &?g%e?:sm.:s:z 1 Memory link request || request || request || request request | | request )
\ ¢ Memory link
{ DDR4 J )
{ DDR4 |
Controlling LLC only (using CAT) Controlling LLC as well as memory bandwidth

e Intel RDT resource partitioning technologies:
o LLC partitioning: CAT
o  MB partitioning: Memory Bandwidth Allocation (MBA)
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Performance of a VNF is highly dependent on both LLC and MB allocations




IIII“ NUMA-aware Dynamic SFC Placement
(NUMASFP)
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e Considers the impact of NUMA and traffic rate and figure out which SFC need to be
migrated in order to improve aggregate throughput of all running SFCs

e Built on OpenNetVMU, a high performance NFV platform

e Placement engine allocates resources and migrates SFCs among NUMA nodes

e Resource table maintains the allocated resources information (in terms of cores,
number of LLC-ways, and percentage of MB) of each SFC

e VNF Profiler generates a lookup table which maps resource requirement of each VNF
based on traffic rate

[1] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire Todeschi, KK Ramakrishnan, and Timothy Wood. Opennetvm: A platform for high

performance network service chains, In Proc. of ACM HotMiddlebox, 2016
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e Performance Evaluation

N T ———

e Alternative placement mechanisms

© Node-balancing: Places SFCs by dividing them into all nodes to
balance each node’s core utilization

o Node-first: Place SFCs on the local node first until all resources are
consumed and then places the SFCs on the remote node

o Octans!!: Place SFCs with the high traffic rates in the local node until
all of its resources are depleted

e All of these approaches assume that the placement of SFCs is
static

[1] Zheng Z, Bi J, Yu H, Wang H, Sun C, Hu H, Wu J. Octans: Optimal placement of service function chains in many-core systems, in Proc. of IEEE TPDS, 2021



=== Simulation Results
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Considered 20 different SFCs of length 3 each
and VNFs are randomly picked from profiled
VNFs!!]

e Randomly select five SFCs and place them in
each server and each SFC receives traffic for
120 Secs

e Normalized Aggregate Throughput (NAT):
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all SFCs over total offered load ANAT of all servers
e Average Normalized Aggregate NUMASFP achieves 16%,

Throughput (ANAT): Average of NAT for all 25% and 23% more ANAT

time 1nstances than Octans, Node-balance,

and Node-first approaches,
respectively

[1] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire Todeschi, KK Ramakrishnan, and Timothy Wood. Opennetvm: A platform for
high performance network service chains, In Proc. of ACM HotMiddlebox, 2016
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Aggregate throughput for various methods over time

e (onsidered 2 SFCs of length 3 each and transmitted traffic ranging from
1 Gbps to 10 Gbps independently
e Attime instance 11, NUMASFP migrates SFC1 to remote and SFC2 to local node

e NUMASEFP outperformance other mechanisms most of the times



=== (Conclusions and Future Directions

e

e NUMASFP places SFCs in a many-core NVF server and dynamically
migrates SFCs among NUMA nodes based on their traffic rates while
maximizing the aggregate throughput of all SFCs

e Built a prototype of NUMASFP on OpenNetVM

e The evaluations of NUMASFP on testbed and simulation reveal that it
provides performance guarantee while significantly improving
aggregate system performance

e Future work
o ML-based solution

m Predicting the future traffic rate and migrate accordingly to avoid
ping-pong effects



w680

Bl

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

THANK YOU!

email: cs17resch01007 @iith.ac.in

Visit NeWS Lab @ IITH for more related research: hitns://newslabiith.acin/
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